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Foreword

The Arctic Ocean is an acoustically unique region because of
low surface temperatures and the presence of the ice canopy. Seasonal
variations in ice coverage, thickness, and roughness make the Arctic
a dynamic and complex environment in which naval antisubmarine 0
warfare acoustic systems must operate. This research examines
horizontal spatial coherence measurements for broadband transients
and examines the change in coherence due to a single under-ice
reflection dependant on sensor depth and frequency.

W. B. Moseley 1R.Eliott,Commander, USN
Technical Director Commanding Officer 0



Executive Summary

This report examines the horizontal spatial coherence of broadband
acoustic energy in the frequency range 100-1200 Hz from explosive sources
under the ice pack. The data were recorded on four hydrophone pairs
with a nominal sensor separation of 370 m from source ranges from 3 to
25 km. Mean-square coherence is computed separately for the direct and
ice-reflected propagation paths, and octave-band frequency averaging
reduces variability inherent in the coherence estimation associated with
explosive acoustic sources. Coherence varies significantly with sensor
depth, range, and frequency. Background noise coherence is also exam-
ined briefly. Changes in coherence because of under-ice reflection are
smallest for the 100-200 Hz octave band, but the change may be as high
as 50% for the higher frequency bands.
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Under-Ice Broadband Transient Measurements and Processing

I. Introduction voltage sensitivity. Explosive sound underwater

In the last few years, the Naval Oceanographic signaling (SUS) charges of 6 oz. TNT-equivalent

and Atmospheric Research Laboratory has played a were detonated periodically along a source track
major role in the U.S. Navy program for exploratory perpendicular to the baseline of the receiving arrays

development in Arctic environmental acoustics.' The over a range of approximately 2 to 50 nmi. The

naval antisubmarine warfare importance of the Arctic Mark 123 Mod 0 SUS 2 detonates at 1000 ft ± 100 ft.

Ocean has increased, and significant manpower has The sound velocity profile, derived from conduc-
been devoted to measuring and understanding the tivity-temperature-depth (CTD) data taken near the

effects of the Arctic environment on ASW systems. receiving arrays, is shown in Figure 2.
Under the pack ice, the sound speed profile is Surface weather conditions included excellent

reasonably stable, and low-frequency propagation visibility, clear skies, northerly winds of 0-10 knots,
anomalies are caused by interaction with the under- and a steady barometric pressure of 29.8 mm Hg.
ice surface. Acoustic energy emissions from potential The air surface temperature dropped from 0 to
targets have been decreasing, making long-range -40'F during the day these measurements were
detections more difficult, even in the low ambient made. Ice thickness wa3 nominally 8 ft with scattered
noise regions that can exist under the ice pack. Thus, ridges from 30 to 50 ft deep. Further environmental
broadband passive systems may be required to details are available in Reference 3.
achieve satisfactory signal-to-noise ratios for long-
range detection and localization. B. Data Acquisition System

This report addresses the effect of under-ice Hydrophones with different sensitivities were used.
reflection on the horizontal spatial stability of broad- Two pairs of hydrophones had preamp sensitivities
band acoustic signals under smooth pack ice. The that were 30 dB less than the other two pairs
goal of this study is to estimate broadband coherence identified in Figure 1. The recording system gainsandnttoiexamineitheechange incocoherencetafteria
and to examine the change in coherence after a were adjusted to yield approximately the same input
single under-ice reflection. voltage levels (±2.0 V) for all phones. The different

sensitivities do not affect the calculated coherence.

I1. Experiment The data acquisition system consists of an
18-channel signal conditioner, an 18-channel

A. Geometry expanded video cassette recorder system (EVCR),
The data were collected in fall 1984 during an a portable VHS video cassette recorder (VCR), and a

Arctic field exercise conducted by the U.S. Navy time-code generator/reader. The signal conditioner
from ice camp Aplis in the Beaufort Sea located prewhitens the analog signals from the hydrophones.
approximately 150 nmi north of Barter Island, The 18-channel EVCR digitizes and formats the
Alaska. Three vertical receiving arrays (horizontal signals and then records them on a standard VCR.4

separation 363 m and 375 m) were suspended to a The signal conditioner includes a programmable
depth of 300 m (Fig. 1). synthesizer to generate calibration tones that are

The effects of under-ice reflection on horizontal recorded at the beginning of each VCR tape. The
coherence are examined using four pairs of hydro- EVCR also has low-pass filters, a multiplexer, a
phones, as shown in Figure 1. Thc hydrophone pairs 12-bit analog-to-digital (AID) converter, an error
differ in depth, horizontal separation, and free-field correction encoder, and a video formatter. The analog
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Figure 1. Experimental geometry identifying hydrophone pair depths, horizontal separations, and channels.

0

SOUND SPEED (m/sec) input/output for the EVCR is ±2 V peak-to-peak
1420 1440 1460 1480 and the maximum single-channel sample rate is
0 ,4.4 kHz per channel. The two VCR audio channels

100 are used for voice annotation and to record time 0
code.

200

III. Data Processing
A. Digitizing 00-

o 400 VCR tapes are played back through the EVCR,
and the output analog signals are digitized at

500 a 4000-Hz sampling rate using a computer-based,
multichannel data acquisition system. This system

600 J includes 3-Mbyte random-access memory, a 0
streaming 9-track tape drive, and a 474-NIbyte hard

700 disk. It employs a 256-channel multiplexer with a
Figure 2. Soundspeed profile derivedfrom CTD measurements 12-bit AID converter. The amplitude is in digitized
near the receiving array. integers and is converted to voltage by 4.88 mV
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per A/D unit. This circuitry does not employ a the larger the bandwidth, the smaller the estimate.
sample-and-hold and thu igitizes each channel The spectrums shown here are averaged in the fre-
sequentially. This time it across channels is quency domain in one-octave bands. Since the
corrected in subsequent processing. The digitized coherence value is depende::, on processing, this
time series data are stored, along with a may not be a good estimate of true continuous wave
digitized 100-Hz synthesized reference tone, on coherence; i.e., a measure of the upper limit of
9-track magnetic tape and then processed on a common power between two channels at a given
VAX- 11/750 computer. frequency, bt it can be used as a quantitative

measure of similarity between the two signals.

B. Coherence Estimation Consistent processing is extremely important in

The hydrophone time series data are time-gated order to compare results from different shots. Time

to separate the direct and surface-reflected arrivals windowing and, most importantly, averaging must

for each shot. These arrivals were processed be the same for each shot. A trade-off exists when

separately to estimate coherence for each hydrophone employing spectral averaging. To obtain good

pair shown in Figure 1. The time series for each estimates of spectrum levels and thus coherence,

arrival were time-aligned to remove any effects due many degrees of freedom (number of FFT bins used

to array deformation and difference in acoustic path in frequency averaging) are desired in the spectral
length. The time-aligned data are analyzed using averaging. This is important because of the high
the program published by Carter and Ferrie, 5  variability in the shot spectrum. However, to observe
modified to incorporate different averaging schemes coherence variations with frequency, it is de -d
(discussed later), to average o- - fewer frequency bins. Also a -

Each time series is Hann-weighted and zero- octave freq', y averaging window repres _its
padded, and the spectral estimates are computed fewer degree freedom for low frequencies than
from the Fourier transform. The Hann window is for higher frequencies. The data are presented for
applied to the transient time series in an effort to 3 one-octave bands (100-200 Hz, 200-400 Hz, 400-
reduce leakage between adjacent frequency bins due 800 Hz) and I one-half-octave band (800-1200 Hz).
to sharp amplitude changes in the transient time The coherence variation in the half-octave band may
series. Each data channel is aligned in the same be slightly higher because of the fewer degrees of
location under the Hann window by using correla- freedom used in the frequency averaging.
tion and smoothed coherence transform (SCOT) Each direct arrival was processed using 250 points
functions to time align the two channels. Data at in the time series. Because of the time spread of
both ends of the resulting spectrum (0-100 Hz and the surface-reflected arrival, the time series was
1200-2000 Hz) are dropped from further analysis. extended to 512 points. The autospectral estimations
The mean-squared coherence, auto correlations, and of the time series from each hydropiione, G.. (f) and
cross correlations are also computed from these GYY(f) and the cross spectral estimate. Gxy(f),
estimates. Figure 3 is a processing flow chart used are averaged in the 3 one-octave r ands to compute
for hydrophone time series pairs. This standard the magnitude-squared coherence (MSC) using
spectral analysis assumes that each hydrophone time Equation 1.
series is a measure of a zero-mean stochastic process
that is jointly stationary and ergodic. Values averaged
just prior to the shot arrival are subtracted from the ( Gxy (f
time series to provide zero-mean data. y(;f) = (()

Explosive data are not stationary, and ensemble IG (f) I I Gyy (f)I

averaging should be used to estimate the coherence.
Since ensemble averaging is not possible, and since Phase difference as a function of frequency and
the mean and variance of the shots are not time estimates of the auto- and cross-correlation functions
independent, frequency band averaging 6 is employed are computed and used in data analysis and quality
to compute coherence. assurance. Any hydrophone data pair in which the

The value of the coherence estimate is also autocorrelations differ significantly arc discarded
dependent on the averaging bandwidth: the smaller from further analysis. Also computed is a smooth
the bandwidth, the higher the coherence estimate; coherence transform (SCOT) function. which has
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INPUTS x(t), y(t)
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Figure 3. Data processing flow chart. The direct and single ice-reflected arrival are time-gated and processed separately.

been used to measure time delays between weak, channels has been removed and to align both 0
broadband-correlated signals.7 8 SCOT appears to channels equally under the Hann window. SCOT is
give sharper time resolution of the cross correlation the Fourier transform of the smoothed complex
than the standard cross correlation. SCOT is useful coherence (i.e., the square root of the MSC) and is
to verify that any time delay between the two given as
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explosion depth in feet, plus 33. All of the SUS
W (f)y(f ) e 2 '" df , (2) charges used have an equivalent TNT charge weight

of 6 oz and a nominal detonation depth of 1000
ft ± 100 ft (320 m ± 32 m). Bubble pulse migration

vhere W(f) is the smoothed cosine weighting is negligible for this small charge weight.

unction, y(f) is the complex coherence as a function By measuring the time from launch to detonation
ff frequency, f is frequency, and "T is time lag. and the time between the surface and bottom arrivals

at the hydrophone detonation depth, calibration was
accomplished using 17 SUS charges. The average

[V. Broadband Acoustic Sources detonation depth was 965 ft (310 m) with a standard
deviation of 41 ft (13 m).

. Underwater Explosives The pressure-time histories for both the calibration
Underwater explosives have been used for many data (represented in Fig. 4) and the long-range direct

rears in both naval and seismic research, and the arrival agree with the time history predicted by
received signals from these sources have been well Equation 3. The measured values of Tb from the
3tudied. 9' 1°'J Figure 4 shows the characteristic time calibration data show some variability associated
;eries and spectrum for a shot at close range (193 m). with detonation depth variability and digitizing rate
The initial pressure peak is followed by several error (0.00025 seconds). The predicted time for Tb
bubble pulse oscillations that diminish with time. from Equation 3 is 0.0096, and the average measured
These waveforms have a characteristic spectrum value from the calibration shots is 0.0089 seconds.
because of the interference between the initial shock These values give predicted and measured bubble
impulse and subsequent bubble pulses. The result pulse frequencies of 104 and 113 Hz, respectively.
is range-dependent modulations between adjacent Interference between the initial shock peak and
spectral peaks and deep nulls. Bubble pulse the bubble pulses causes the deep nulls that
fu-damental period and spectrum source levels are characterize the shot spectrum in Figure 4. The
sensitive to the detonation depth and charge weight. energy rises sharply at low frequencies, peaks near
If both the latter are known, then the pressure-time the bubble pulse frequency, and falls off at
history of the idealized bubble pulse can be approximately 6 dB per octave, as predicted for
determined from Equation 3.10 exponential waves. The lower frequencies are

Here, P is pressure in pounds per square inch, dominated by the bubble pulse fundamental and
W is the charge weight in pounds, R is the slant higher frequencies by the shock wave. Secondary
range in feet, T is time in seconds, and Z is the bubble pulses introduce weaker interference patterns,

P 2.08 x 0 1.13
/R

T2P 3 3 0 0 ~w

0. _ b_ _ P2 = o.2P,Cr o P 1U Tb 4.34

C(3)

TIME (sec) (3)



2.5 is the time series data for each channel; 6b is the

2.0 narrowband spectral estimate for each channel; 6c
is the autocorrelation for each channel; 6d is the

1.5 narrowband cross-spectral estimate; 6e shows
the cross correlation between channels; 6f is the

1.0 phase difference between channels as a function of

E 0.5 frequency; 6g shows the SCOT correlation; and 6h
is the mean-square coherence obtained from one-

ztl 0 octave-band averaging of the spectal estimates.

-0.5 Figure 7 shows corresponding results for the ice-
reflected arrival in the same format and for the

-1.0 same shot as in Figure 6.

-1.5 The time series in Figure 6a is an interference
pattern created by the initial explosive pressure pulse

-2.0 and subsequent pulses from bubble oscillation. In 0
0 .005 .010 .015 .020 .025 .030 .035 .040 .045 .050 the example shown here, the two received pulses

TIME (sec) show the same general shape; however, in channel 2

(the left channel), the duration of the received signal
-38 - is shorter than in channel 3 (the right). The first

two peaks align very well, but the last peak occurs
-42 5 msec later in the right pulse than in the left
-46 - pulse. This 5-msec delay is common for other shots
-and for other hydrophone pairs in this data set, but

50 cannot be adequately explained. The time is too
0short to be an effect of internal waves. Volume
C. -54 inhomogeneity is also unlikely, and ocean micro-

structure is generally associated with amplitude
fluctuations-not time spreading. One possible
source might be micro-multipaths that are always
present but are even more prolific near the half-

_66 channel boundary created by the sound speed profile.
0 200 400 600 Boo IOO 1200 When this occurs the time alignment is always based

FREQUENCY (Hz) on the first arrivals.
The time series for the ice-reflected arrival

Figure 4. Typical explosive shot time series and spectrum at

close range (193 m). (Fig. 7a) shows a much stronger interference pattern
than the direct arrival. This time series also exhibits
noticeable time spreading due to under-ice scattering.

causing peak and null frequency shifts at higher The ice-reflected time series is over twice as long
frequencies. The null spacing is equal to the bubble as the direct arrival and was truncated to 512 points
pulse frequency. for spectrum estimation and analysis.

The spectra from the long-range direct and
B. Time Series and Spectrum Analysis reflected arrivals (Figs. 6 and 7) maintain the 0

Ray trace results for the deepest hydrophone pair characteristic short-range shot spectrum shown in
appear in Figure 5. All predicted t:mes between the Figure 4. The narrowband peaks and nulls in the
direct, ice-reflected, and bottom-reflected arrivals spectra will shift and vary in level because of
showed reasonable agreement with the data for all interference among the initial shock pulse and
ranges. The ray trace also shows the half-channel subsequent bubble pulses. The reflected arrival
effect because of the sound speed profile. spectra exhibit even stronger interference effects

Figure 6 shows example acoustic signals from the on the levels and locations of the peaks and nulls.
deepest hydrophone pair corresponding to the direct Also, the characteristic 6 dB per octave roll-off
arrival for a shot at a range of 3 km. Figure 6a appears to be shifted to slightly higher frequencies.
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Figure 5. Ray trace based on sound speed profile from Figure 2.

As expected, the autocorrelations of the direct the ranges are not equally spaced. Substantial
and reflected arrivals (Figs. 6c and 7c) exhibit variability with range and frequency can be seen in
secondary peaks that corresponds to multiples of these figures. In general, the coherence values
the fundamental bubble pulse frequency. The ice- decrease with frequency for both arrivals. The
reflected autocorrelation shows a slightly longer noticeable exception is for the deepest hydrophone
zorrelation time because of the scattering of the pair (Fig. 8), where the coherence increases with
reflected waveform. The phase difference plots frequency for both arrivals.
(Figs. 6f and 7f) show that the phase changes between For coherence to increase with frequency, the
the two channels are random and that there is no changes in phase difference between the two channels
:ommon mode interference. The cross-correlation must decrease as frequency increases; i.e., the
and SCOT functions (Figs. 6e, 6g, 7e, 7g) verify variability in the spectra (GY, G., and GrY) must
that only the waveforms of the two arrivals are diminish as frequency increases. In general, vari-
being compared in the coherence estimate and that ability in the spectral levels shown in Figures 6b,
there is no time delay between channels to modulate 6d, 6f, 7b, 7d, and 7f does not diminish with
the cross spectra. increasing frequency. Although the direct arrival

shows less change in the phase diference than the
reflected arrival, there are no obvious smoothing

V. Coherence Estimates trends with frequency for any arrival to explain the
A. Direct and Ice-Reflected Arrivals increasing coherence trend for higher frequencies.

The coherence for the direct and ice-
reflected arrivals are shown in Figures 6h and 7h. B. Background Noise Coherence
Figures 8-11 summarize the coherence data for the The sound speed profile (Fig. 2) supports two
Jirect and ice-reflected arrivals in the four frequency half-channels at approximately 50 and 270 m. Time-
bands as a function of horizontal range for the pressure signals received at each hydrophone consists
hydrophone pairs identified in Figure 1. Note that of two parts, the highly coherent contribution from

7
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DEPTH = 300 m SEPARATION = 363 m

DIRECT ARRIVAL ICE-REFLECTED ARRIVAL

FREQUENCY BAND (Hz) FREQUENCY BAND (Hz)
100-200 200-400 400-800 800-1200 100-200 200-400 400-800 800-1200

3
3

4

Je 10X.

< 14
17
19
20
21
25

27
29

COHERENCE SCALE

0 0.25 0.50 0.75 1.0

Figure 8. One-octave band averaged coherence estimates as a function of range for channels 213 as identified
in Figure 1.

the shot and a smaller contribution from background arrival, except that no time alignment of the two
noise. The main component of the background noise channels was attempted. The noise coherence was
is ambient noise generated near the surface by ice computed using one-third-octave frequency band
cracking and movement, wind-blown ice and snow, averaging to obtain a better defined frequency
and other mechanisms. Arctic ambient noise gener- structure. Figure 12 shows the background noise
ated near the surface and other noise from long-range coherence for the four hydrophone pairs as a
sources propagates farther inside the channels, but function of the one-third octave band given for each
only local noise arriving from nearly vertical pen- SUS shot number in Table 1.
etrates below the channel. Because of the presence Inside the half-channel (data channels 4/5, 6/7,
of the acoustic half-channel, and because ambient and 8/9) the noise coherence showed little or no
noise originates near the surface, background noise linear frequency dependence for bands 6-12. Below
coherence should be diffcrent above and below the the acoustic half-channel (data channels 2/3) the
half-channel. Inside the half-channel, noise from noise coherence decreased slightly with frequency0
long-range sources is present; below the half-channel, for bands 6-12. Band 2 consistently had the highest
primarily local noise sources contribute to the back- noise coherence of any band for all hydrophone
ground noise. A noise time series was used to pairs, indicating noise coherence is greatest near
calculate the coherence of the background noise for 125 Hz. To examine frequency dependence, the
hydrophone pairs inside and below the 270-in background noise coherence data from Figure 12
channel. were averaged over all SUS shots in each frequency

A noise time series of 250 points was taken prior band. Table 2 shows these averages and the standard
to each shot arrival. This series was used to calculate deviation.
the background noise coherence. The noise data The averaged noise coherence shows similar
were processed in the same manner as the direct frequency variability for the hydrophone pairs inside

12



DEPTH = 108 m SEPARATION = 738 m

DIRECT ARRIVAL ICE-REFLECTED ARRIVAL

FREQUENCY BAND (Hz) FREQUENCY BAND (Hz)
100-200 200-400 400-800 800-1200 100-200 200-400 400-800 800-1200

3

3
3
4

..............

6

-~10

14

27

F 9 estimatesa.:a.f:ncto,.of range.for.channels 4i. as..dent...ed
in Figure.1.

igue R. FREQUENCIE Sand ---,. aver giun rng e sa nr ev iainiihe

1 89-112 Hz bands 1-5 because of.fewer FFT bins for spectrm

21 112-141::::: averging:Bad:2:onsitenly:cntais:te:hihes

3 14 -178 noise cohernc for all hydrophone pairs and.r
4nce 178qu y 2. c.nds t15 h the resen of ae coherent

Fi4-2r2 sho signa rrqeceie atr the e hydrophone pi s Inid
6AN 282-355 thresuhalf-hn the egraaTT inue ispreunc

NUMBR FEQUNCindaepegnen. BeoT h al-hne he degradddevation ihri
88 4-612 is bnsghtlybecss at higher Ffquenciescausingrth

9 562-708 obervedng shot sina co hrenycentincreae iet

10 1708-891 forqepny. 2 H.'epesneoachrn

51 8914-1120 Thegrun maniu gad e e coherence or the rc

12 1120-1410arvl4shg erisd the half-channel than berd to s f e lownc
ineed.Blwthe hafchannel. The ierfcedaialdergtos

8 47-52 s at tenato ands sattgerngeduentoireflctuiong ths
hehafchnnl(cs /567 8 andrve s/h). Belownth coherence isrdcdisietecancel. e Blwith

1cous1ic half-channel (ch.T2/)theaerahe aient o coherencfor:::e dres

2 1120 110iiiiiiiilii aria.i...r..ieth afch n ha eo
atenato and scateingdu.to.elecio;.tus

he ur halfcha nectae 4/,6/and 8/9erag e loh coherence esiae a uciso rduced insdth channel . Belo thednie

c freqenyhannds .23shew avran os channel-2 u, the e rao noise coherence cess

:oherence shows a constant decrease with frequency. the reflected arrival penetrates because of steep
Nae standard deviation in Table 2 is fairly uniform reflection angles, and measured coherence increases.
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DEPTH = 188 m SEPARATION = 375 m

DIRECT ARRIVAL ICE-REFLECTED ARRIVAL

FREQUENCY BAND (Hz) FREQUENCY BAND (Hz)
100-200 200-400 400-800 800-1200 100-200 200-400 40C-800 800-1200

3
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3
4

4
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0 0.25 0.50 0.75 1.0

Figure 10. One-octave band averaged coherence estimates as afunction of range for channels 6/7 as identified
in Figure 1.

Table 2. Computed coherence averaged over all shots and standard deviation for each one-third octave band

defined in Table 1 and for the hydrophone pairs identified in Figure 1. 

AVERAGE 1 2 3 4 5 6 7 8 9 10 11 12

Channel 2/3 0.32 041 0.33 0.23 0.17 0.23 0.24 0.18 0.18 0 17 0.15 0 15
Channel 4/5 0.29 0.37 0.24 0.18 0.20 0.23 0.23 0.20 0.31 0.27 0.21 0.23
Channel 6/7 0,20 0.46 0.35 0.20 0.18 0.31 0.16 0.30 0.45 0.31 0.20 0 19
Channel 8/9 0.28 0.43 0.37 0.28 0.27 0.20 0.21 0.15 0.31 0.22 0.22 0 12

STD. DEV. 1 2 3 4 5 6 7 8 9 10 11 12

Channel 2/3 0.19 0.27 0.27 0.18 0.15 0.18 0.17 0.14 014 0.14 0.16 0 19
Channel 4(5 0.24 0.24 0.24 0.15 0.12 0.19 0.13 0.16 0.18 0 11 015 0 10
Channel 6/7 0.24 0.21 0.26 0.18 0.13 0.24 0.13 0.13 0 15 0,16 0,11 0 10
Channel 8/9 0.20 0.30 0.23 0.16 024 019 0 18 014 018 013 013 010

C. Horizontal Separation and less, but there is insufficient data at other depths
Spatial Coherence and separations to be conclusive. The ice-rcflected

Data in Figure 9 were obtained with a horizontal arrival for the widely separated pair shows less
sensor separation nearly double the others. Compared frequency dependence than the direct arrival and
with Figure 11, it appears that doubling horizontal slightly higher coherence than the same frequency
separation decreases coherence by half for the direct bands for the smaller separation. Coherence changes
arrival. This effect for the ice-reflected arrival seems in range appear in both the direct and reflected

14



DEPTH = 93 m SEPARATION = 375 m

DIRECT ARRIVAL ICE-REFLECTED ARRIVAL

FREQUENCY BAND (Hz) FREQUENCY BAND (Hz)
100-200 200-400 400-800 800-1200 10-200 200- 400 400-800 800-1200
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Figure 11. One-octave band averaged coherence estimates as a function of range for channels 8/9 as identified
in Figure 1.

arrivals and increase slightly near 11 and 20 km. The reflected arrival coherence is higher
The ray trace (Fig. 5) also indicates an increase in (i.e., negative change) than the direct arrival in
amplitude near these ranges. the lowest frequency band in pair 2/3 and in the

highest frequency band in pair 4/5. Pair 2/3 is
VI. Coherence Change After Reflection the deepest pair (below the half-channel), and

4/5 has the greatest horizontal separation. Figure 14Figure 13 shows the fractional change in coherence shows the coefficient of variation (standard
after a single under-ice reflection for the four deviation/average) of the change in coherence over

range. Variation is also highest for the deepest

hydrophone pair and for the pair with the widest

2 /2 separation.
Y1dircct - 7reflectcd / Ydircct R (4) The change in coherence due to reflection is

R smaller for the low octave because low fre-
quencies "see" a smoother surface and therefore

where the bars denote an average over range (all less coherence loss because of scattering.
shots) and y2 is the NISC. The change for pairs
6/7 and 8/9 are twice as great, on average, as for VII. Summarv
the deep pair, 2/3. and the wide pair, 4/5. No obvious
depth dependencies arc discernible, but the data do Measurements were made of direct and ice-
show a frequency trend. The lowest frequency band reflected arrivals from explosive acoustic sources
clearly shows the smallest fractional change in under the Arctic ice pack. Coherence estimation is
coherence. a difficult problem and is not defined theoretically
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Figure 13. Range-averaged fractional change in coherence computed from Equation 4 after a single under-ice
reflection.
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